GRE数学考试中的概率问题考察度很高,南京朗阁小编为大家整理了一些备考的资料。想提高考试成绩的同学一起来看看吧!
概率(Probability):某一事件在相同的条件下可能发生也可能不发生,这类事件成为随机事件(random occurrence)。概率就是用来表示随机事件发生的可能性大小的一个量。很自然的把必然发生的概率定为1,并把不可能发生的事件的概率定为0,而一般随机事件的概率是介于0和1之间的一个数。 一、等概基本事件组:满足下列二条性质的n个随机事件A1,A2,─ An 被称为“等概基本事件组”:⑴ A1,A2,─ An 发生的机会相等:⑵在任一实验中,A1,A2,─ An 中只有一个发生。等概基本事件组中的任一随机事件Ai(i=1,2, ─,n)称为“基本事件”。如果事件B是由等概念基本事件组A1,A2,─ An 的m个基本事件构成,则事件B的概率P(B)=m/n,这种讨论事件概率的模型称为“古典概型”。 二、全概率公式 某一个事件A的发生总是在一定的其它条件下如B,C,D发生的,也就是说A的概率其实就是在,B,C,D发生的条件下A发生的概率之和.A在B发生时有一个条件概率,在C发生时有一个条件概率,在D发生时有一个条件概率,如果B,C,D包括了A发生的所有的条件.那么,A的概率不就是这几个条件概率之和么. P(A)=P(A|B)+P(A|C)+P(A|D) 三、独立事件与概率 两个事件独立也就是说,A,B的发生与否互不影响,A是A,B是B,用公式表示就是P(A|B)=P(A)所以说两个事件同时发生的概率就是: P(A U B)=P(A)×P(B)................公式4 四、正态分布 高斯分布(Gaussian)(正态分布)的概率密度函数为一钟型曲线,即a为均值,为标准方差,曲线关于x=a的虚线对称,决定了曲线的“胖瘦”。 高斯型随机变量的概率分布函数,是将其密度函数取积分,即,表示随机变量A的取值小于等于x的概率。比如A的取值小于等于均值a的概率是50%。曲线为ps。如果你没学过概率论的话,这部分内容很难理解,绝大部分时候你不会遇见这种题的。 (责任编辑:admin) |
文中图片素材来源网络,如有侵权请联系删除